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HF Geolocation Phase 1a Overview
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Introduction

• The Leidos HF Geolocation (HFGeo) technical approach 
comprised an integrated algorithm suite for geolocating HF 
signals using vector sensors

• It addressed the four core technical areas of (1) noise 
mitigation, (2) vector array signal processing, (3) geolocation 
(later deemphasized), and (4) characterization

• Detection is distributed over the channelization and signal processing 
functions

• Each of these algorithms was integrated into the Leidos HFGeo 
testbed, a configuration driven data analysis tool that 
successively applies detection, interference mitigation, and 
angle estimation followed by a display and archiving of results 
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Signal Processing Architecture
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Calibration
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Element: 1, Channel: 0
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 The primary calibration source provided for both Phase 0 and Phase 1A was a vertical whip 
antenna relatively close to the Vector Sensor Array
 195m in Phase 0 and 60m in Phase 1a

 Assumed a vertically polarized wave at an elevation of 0 degrees incident on the sensors
 Since the fields from the cal whip are almost certainly more complicated than assumed, 

especially for Phase 1a, the calibration weights obtained in this manner were meant to 
result in reasonable first-order approximations – to be refined with corrections from, for 
example, Robust MUSIC or the MMSC algorithm.

Cal Whip Helicopter

1 second CPI 20 second CPI
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Multi-Mode Self Calibration (MMSC)
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 MMSC is an approach for blind estimation of angle 
of arrival and calibration vectors

 STRAD developed a formulation to estimate 
calibration based on a Maximum Likelihood 
approach

 Estimator is used to compute minimum cost (or 
maximum likelihood) as a function of AOA

 Typically start with cal weights based on, e.g., cal 
whip data, although not necessary

 Two parameters required: 
 λ (ratio of the noise and calibration prior variances) –

typically 0.5
 Number of eigenvectors used – typically 4

Minimized cost function (PSK data from 8/13/13)
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Impulsive Noise Mitigation

• Impulsive Region Detection

– Measure the linearity of small windows of received data and estimate the parameters of an α-
stable distribution for the data

– If the data is “peaky” or “heavy tailed” then it will have a higher proportion of impulsive samples

• Subband Soft Limiting Impulse Mitigation

– Apply soft limiting to impulsive samples by applying a “Weighted Myriad Filter” to that region of 
data.

– The Weighted Myriad Filter (WMyF) forms a non-linear estimate of location for each window of 
data that greatly reduces the influence of outliers

Myriad Filtering Definitions:

K = Linearity Parameter
w = weight vector
{xn} = data samples
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– A “center-weighted” weight vector is used that 
allows center samples to be preserved unless 
they are true outliers

– The result is similar to a median smoother, but 
more robust
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Interference Mitigation and Signal Separation
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• The Leidos Team’s HFGeo solution for noise mitigation centered 
around two major techniques—Statistical Subspace Adaptive 
Processing (SSAP) and Spatial Clustering. 

• Both techniques took advantage of spatial and temporal degrees of 
freedom provided by the vector sensors to reject noise or interference 
and isolate signals of interest.  
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SSAP
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• SSAP processing is the core of a suite of algorithms aimed at 
mitigating interfering signals to enable the detection and 
estimation of weaker signals

• Major techniques:

– Dominant Mode Rejection
– Waveform-Matched Excision
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Dominant Mode Rejection
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• Dominant Mode Rejection is tailored 
to automatically target the most 
dominant signal in the spectrum and 
isolate it in the time, frequency, and 
spatial domains

• This signal is then mitigated to enable 
further detection of weaker signals by 
beamforming away the dominate 
signal

• In the case that a signal does not 
have additional structure that can be 
used to improve the narrowness of the 
excision, a null is steered in the 
direction of the dominant signal

An example of DMR for the AM Radio Habana signal
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Waveform Matched Excision
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• In the cases where a signal is structured, such as an LFM or PSK31 signal, 
Waveform Matched Excision attempts a better fit of the interfering signal 
allowing much more precise excision

AM Signal Beneath an LFM interferer Excision of a PSK31 interferer
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Example Radar Excision Result

Excising the Dominant In-situ Cal LFM Interferer

The In-situ cal source was ~13dB higher power and about 2ms 
earlier than the source at New Kent, but after excision the New 
Kent signal was accurately located.

New Kent Source 
@ ~72° El, 166 ° Az
now detected.

MUSIC after LFM Excision:

In-situ Cal Source 
@ ~0° El, 65 ° Az

No detection 
of the second 
source.

Raw MUSIC Result:
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Time-Frequency Plane Based 
Spatial Clustering

• The time frequency distribution of received signals allow for 
spatial separation

– Unique signals will have periods where each occupies 
independent portions of the time frequency (TF) plane

– Using the TF plane for each element of a receive array 
allows estimation of a “clean” steering vector

– These steering vectors can be used to initiate clustering

– Use the “class” covariances to determine the angles of 
arrival or use spatial eigenvectors to separate the signals

Raw Spectrogram Clustering Result

Example: Two AM Sources

Isolated Spectrogram of 
Dominant Signal

Isolated Spectrogram of 
Weaker Signal

Separating Signals via Cluster Results

Computing the Classes
Calculate:

spectrogram(t,f) = STFT(t,f) for each of the N elements

v(t,f) = “steering vector” from each array element’s STFT (1xN)

Classify:

Choose the “steering vector” with the highest STFT energy vmax

and compute the “cosine similarity” 

If the similarity exceeds a threshold, add that vector to the class.
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Using the spatial eigenvectors from each 
signal class, signals can be further isolated

Spatial clustering enables classification of the two 
interfering signals in the time and frequency plane.

Spatial Clustering
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Detection Algorithm:  
Layered Signal Grouping

• Work with a Leidos teammate (Dr. Berndt-Peter 
Paris of GMU) on another R&D program (DARPA’s 
Radiomap), led to a spectrogram (rather than 
periodogram) based detector with superior detection 
performance.

- By detecting in the time-frequency domain 
rather than just the frequency domain, one can 
both avoid “blocking” wideband signals and 
optimally constrain incoherent integration to 
the time the signal is truly on.

- Identifies regions of spectrogram where energy 
is consistently higher than noise floor using 
GLRT algorithm

- For each such identified signal “rectangle,” 
provides center frequency, bandwidth, signal 
start, signal duration, and average power

• Value is pronounced in the presence of bursty
interference.

Signal of
Interest

Time-Freq Detector

PSD
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Angle Estimation Algorithms:  
Vector Sensor Signal Processing
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• MUSIC based algorithms

– Standard MUSIC

• With minor variants

– Robust MUSIC

• Computationally intensive, used primarily for optimizing calibration weights

– Provides corrections to 1st order cal weights from, e.g., cal whip

• Based on Robust Capon Beamforming, with following differences:

– We want to minimize the projection into Rnoise rather than Rdata
-1

– We must find the optimum polarization for the perturbed steering vector

– G-MUSIC

• Based on Random Matrix Theory

• Estimation based on sample covariance matrices is enhanced by considering 
the expected distribution of eigenvalues around the values of the true 
covariance matrix, using the G-estimation method
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Angle Estimation Algorithms:  
Vector Sensor Signal Processing (cont)
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• Sparse Reconstruction Techniques (L1–norm)
– Basis Pursuit DeNoise (BPDN)

• Uses Spectrally Projected Gradient Method

• Allows reasonably accurate angle estimates using small sample support (as small as single 
snapshot)

• Still somewhat computationally intensive

– Orthogonal Matching Pursuit (OMP)
• OMP is a greedy, iterative algorithm based on successive projections of the data onto a 

highly redundant “dictionary” of possible signal constituents.

• Less accurate than BPDN, but much more computationally efficient

• Sub-Array Processing
– Above estimation techniques typically give detection at angle near true angles of 

unresolved O-, X-modes

– Form sub-arrays from total Vector Sensor Array

• Form broad null (in angle and polarization) and place on one principal circular polarization 
for each sub-array using MVDR beamformer.

• Resulting array of beamformer outputs still has degrees of freedom that can be used to 
solve for angle and polarization of remaining, near orthogonal circular polarization
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In Situ Whip Calibration

• To the right are plots of MUSIC angle estimations 
from the helicopter data from 8 Aug for each EMVS 
separately and for the full array.

• In Situ weights were generated from the data 
collected at 19:10:00, and the estimates/truth are 
from the 19:16:00 file on the same day.

• Significant variability is evident.

– Is element-to-Rx channel mapping correct for all 
sensors?

– Is sensor-to-sensor coupling a problem?

– Are all of the sensor orientations correct?

– Does the near field look significantly different from our 
assumptions?

• Using the single In Situ whip as a starting 
point for auto-focusing techniques may be 
challenging.
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• As an alternate test of calibration quality, the 8 Aug 
helicopter data was used to generate calibration 
weights, instead of the In Situ whip

• Same technique as for In Situ, but integrated over just 
1 second of data, since the helicopter is moving

• Helo cal signal is from 19:17:10 (70 seconds into file 
raw_130808_191600_9200_0020)

• Helo angles at cal point: Az = 60 deg, El = 13.5 deg

• To the right are plots of MUSIC angle estimates from 
the helicopter data from 8 Aug for each EMVS 
separately and for the array. 

• All estimates diverge from truth as one moves away 
from the point where the cal signal was taken

• The calibration may be adequate for the full array in 
azimuth

• Elevation stability is markedly worse

18
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Calibration Challenges
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Swapping Channels 17 and 18
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Azimuth Search (  )
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Angle Results:  Case 5 (8/13 15:55-16:05)
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Conclusion

• Significant progress was made on interference mitigation, signal 
characterization, and separation in the HF domain

• Direction finding performance was less than satisfying in many cases
• Limited calibration data sources
• Potential cable swap on data collect
• Some equipment swapped out during data collects due to failures

• Good reason to believe that with better calibration data and array 
geometry that DF performance could have been better
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